

Easylon ISA-Bus Interface Easylon PC/104 Interface

Gesytec GmbH Pascalstr. 6 D-52076 Aachen

Tel. + (49) 24 08 / 9 44-0 Fax + (49) 24 08 / 94 4-100 Email: info@gesytec.de www.gesytec.de

Dok. Nr: 96A0016A01, V03.9 Stand: Juni 2014

Dieses Handbuch ...

... gibt Ihnen alle nötigen Informationen, um das Easylon[®] ISA-Bus Interface und das Easylon PC/104 Interface effizient zu nutzen. Auf die beiden Bauformen von Schnittstellenkarten zwischen LONWORKS® Netz und ISA Bus wird in diesem Handbuch generell mit dem Begriff "Interfacekarte" Bezug genommen.

Dieses Handbuch behandelt ausschließlich die Handhabung der Easylon Interfacekarten. Es wird weder auf die Echelon® LONWORKS Technologie eingegangen, noch werden das Echelon Microprocessor Interface Program (MIP) oder Echelons Network Service Interface (NSI) erklärt, die auf den Karten als Firmware eingesetzt werden können. Die Treiber der Interfacekarten wurden gemäß der Spezifikation der Firma Echelon entwickelt. Auch sie werden hier nicht im Detail behandelt. Ausführliche Informationen zur LONWORKS Technologie finden Sie in den Dokumentationen der Firma Echelon. Insbesondere hilfreich für die Entwicklung von Applikationen, die eine Easylon Interfacekarte verwenden dürfte Echelons "LONWORKS Host Application Programmer's Guide" für Sie sein.

Nach einer kurzen Vorstellung von Easylon ISA-Bus Interface und Easylon PC/104 Interface in Kapitel 1, beschreibt Kapitel 2 die nötigen Schritte zur Installation der Karten.

Kapitel 3 gibt eine ausführliche technische Beschreibung.

Die "Programmierhinweise" in Kapitel 4 geben Ihnen die nötige Information zum Erstellen eines eigenen Netzwerktreibers für die Easylon Interfacekarten.

Diese Dokumentation kann jederzeit ohne Ankündigung geändert werden. Gesytec übernimmt keinerlei Verantwortung für Fehler oder Ungenauigkeiten in dieser Dokumentation und etwaige sich daraus ergebende Folgen.

Gesytec sowie deren Repräsentanten und Mitarbeiter haften in keinem Fall für etwaige Defekte, indirekt verursachte oder aus dem Gebrauch folgenden Schäden, die aufgrund der Verwendung oder der Nichtanwendbarkeit der Software oder der begleitenden Dokumentation entstehen.

Easylon ist ein registriertes Warenzeichen der Gesytec GmbH.

Echelon, LON, LONWORKS und NEURON sind registrierte Warenzeichen der Echelon Corporation. Windows ist registriertes Warenzeichen der Firma Microsoft. Andere Namen können eingetragene Warenzeichen der entsprechenden Firmen sein.

Die Easylon Interfacekarten werden entweder mit dem MIP/P50 oder mit dem NSI Programm der Firma Echelon betrieben. Die Rechte an dieser Software liegen bei der Echelon Corporation.

Inhalt

1	Produk	stinformation	5
	1.1	Varianten	8
	1.2	Lieferumfang	10
	1.3	Überblick	
2	Installa	ation	11
	2.1	Einstellen der Kartenadresse	11
	2.2	Einbau der Karte	12
	2.2.1	Montage des Ferritkerns	12
	2.3	Treiber-Installation	13
	2.3.1	Treiber für Windows Betriebssysteme (WDM-Treiber)	13
	2.3.2	Windows 95 / NT Treiber	17
	2.3.3	EasyCheck – Test Utility für die Windows Treiber	19
	2.3.4	Windows und 16 Bit Applikationen	19
	2.3.5	Windows CE Treiber	
	2.3.6	DOS Treiber	20
3	Techni	sche Beschreibung	24
	3.1	Netzwerk Interface	24
	3.2	ISA Bus Interface	24
	3.3	Reset, Systemsteuerung	25
	3.4	Blockdiagramm	25
	3.5	Steckerbelegung	27
	3.5.1	Easylon ISA-Bus Interface	27
	3.5.2	Easylon PC/104 Interface	
	3.6	Service LED	
	3.7	Anschluss externer LEDs	
	3.8	Technische Daten	
	3.8.1	Allgemeine Daten	
	3.8.2	Easylon ISA-Bus Interface	
	3.8.3	Easylon PC/104 Interface	
	3.9	Elektromagnetische Verträglichkeit	
4	Progra	mmierhinweise	
	4.1	LONWORKS Netzwerk Knoten	35
	4.1.1	Netzwerk-Interface	35

	4.1.2	CPU	35
	4.2	Baugruppenstatus	37
	4.3	ISA-Bus Interface	39
	4.3.1	I/O-Adresstabelle	
	4.3.2	Reset-Verhalten	41
	4.4	Windows CE – Applikationsschnittstelle	42
	4.4.1	CreateFile	42
	4.4.2	CloseHandle	42
	4.4.3	ReadFile	42
	4.4.4	WriteFile	43
	4.4.5	GetVersion	43
	4.4.6	Watcher	43
	4.4.7	ReadFile mit Timeout	44
5	Liste de	er Abbildungen	45
6	Liste de	er Tabellen	45
7	Index47		

Produktinformation

Dieses Handbuch beschreibt die Easylon Interfacekarten:

Easylon ISA-Bus Interface, PC Einsteckkarte für kurze, 16-Bit ISA Bus Slots.

Easylon PC/104 Interface, ISA Bus Interfacekarte im PC/104 Format.

Easylon PC/104 Interface, Version LP43

Anmerkung: Im Handbuch werden die Easylon Interfaces gemeinsam als "Interfacekarten" angesprochen. Falls Unterschiede zwischen den Interfacekarten hervorzuheben sind, werden die Karten ausdrücklich als "Easylon ISA-Bus Interface" oder "Easylon PC/104 Interface" bezeichnet.

Bild 1-1 Easylon ISA-Bus Interface

- (1) Service Taster
- (2) Service LED
- (3) Steck-Schraubklemme (nur bei TP/XF und FTT¹ Varianten)
- (4) 9poliger Sub-D Stecker
- (5) ROM mit Echelons MIP/P50 oder NSI
- (6) Typenschild auf Rückseite (vgl. Tabelle 1.1)
- (7) DIL Schalter zur Adresseinstellung
- (8) Stecker für Easylon Watcher² Modul

Bild 1-2 Easylon PC/104 Interface, Version LP43

Typkennung LP43.xxx

- (1) Service LED
- (2) Service Taster
- (3) LON Traffic LED (RX: rot, TX: grün)
- (4) Stecker für LON-Bus und Schutzerde
- (5) DIL-Schalter zur Festlegung der Basisadresse
- (6) PC/104-Busstecker
- (7) Typkennung und Serien-Nr. am Stecker
- (8) Stecker für externe Signale

Bild 1-3 Easylon PC/104 Interface, Version LP42

Typkennung LP42.xxx

- (1) Service LED
- (2) Service Taster
- (3) LON Traffic LED (optional)
- (4) Schutzerde
- (5) Flachband-Stiftleiste für LON-Bus
- (6) DIL-Schalter zur Festlegung der Startadresse
- (7) PC/104-Busstecker
- (8) Typkennung und Serien-Nr. am Stecker

- ¹ TP/XF = transformer coupled twisted pair, FTT = free topology transceiver
- ² Das Easylon Watcher Modul ist nicht mehr verfügbar.

Bild 1-4 Easylon PC/104 Interface, Version LP4

Typkennung LP4.xxx

- (1) Service Taster;
- (2) Service LED
- (3) 10poliger IDC Stecker
- (4) DIL Schalter zur Adresseinstellung
- (5) PC/104 Stecker
- (6) Typenschild auf Rückseite
 - (vgl. Tabelle 1.1)
- (7) Stecker für Easylon Watcher Modul

1.1 Varianten

Folgende Varianten der Easylon Interfacekarten sind erhältlich und in dieser Dokumentation beschrieben. Darüber hinaus gibt es weitere kundenspezifische Versionen, für die dieses Handbuch nur teilweise zutrifft. Die einzelnen Varianten der Interfacekarten sind durch ein Typenschild identifizierbar.

Typ Kennung	Bestellcode	Netzwerk Interface	Variante					
Easylon ISA-E	Easylon ISA-Bus Interface							
LPC.BA	P.P10001	TP/XF-78	MIP/P50					
LPC.BB	P.P11001	TP/XF-78	$MIP/P50 + Watcher^3$					
LPC.BC	P.P10011	TP/XF-78	NSI					
LPC.BD	P.P11011	TP/XF-78	NSI + Watcher					
LPC.CA	P.P10002	TP/XF-1250	MIP/P50					
LPC.CB	P.P11002	TP/XF-1250	MIP/P50 + Watcher					
LPC.CC	P.P10012	TP/XF-1250	NSI					
LPC.CD	P.P11012	TP/XF-1250	NSI + Watcher					
LPC.DA	P.P10003	RS-485	MIP/P50					
LPC.DB	P.P11003	RS-485	MIP/P50 + Watcher					
LPC.DC	P.P10013	RS-485	NSI					
LPC.DD	P.P11013	RS-485	NSI + Watcher					
LPC.AA	P.P10004	FTT	MIP/P50					
LPC.AB	P.P11004	FTT	MIP/P50 + Watcher					
LPC.AC	P.P10014	FTT	NSI					
LPC.AD	P.P11014	FTT	NSI + Watcher					

Tabelle 1-1Varianten, Bestellnummern und Typenbezeichnung EasylonISA-Bus Interface

³ Das Easylon Watcher Modul ist nicht mehr verfügbar.

Produktinformation

Typ Kennung	Bestellcode	Netzwerk Interface	Variante				
Version LP43	Version LP43						
LP43.FBB	P.P73106	FT-X1	MIP/P50,				
			erw. Temp., Coating				
Version LP42							
LP42.BA	P.P10601	TP/XF-78	MIP/P50				
LP42.BC	P.P10611	TP/XF-78	NSI				
LP42.CA	P.P10602	TP/XF-1250	MIP/P50				
LP42.CC	P.P10612	TP/XF-1250	NSI				
LP42.DA	P.P10603	RS-485	MIP/P50				
LP42.DC	P.P10613	RS-485	NSI				
LP42.AA	P.P10604	FTT10	MIP/P50				
LP42.AC	P.P10614	FTT10	NSI				
LP42.EA	P.P10605	Direct Connect	MIP/P50				
LP42.EC	P.P10615	Direct Connect	NSI				
LP42.FA	P.P10606	FTX	MIP/P50				
LP42.FC	P.P10616	FTX	NSI				
Version LP4							
LP4.AA	P.P10104	FTT	MIP/P50				
LP4.AB	P.P11104	FTT	MIP/P50 + Watcher ⁴				
LP4.AC	P.P10114	FTT	NSI				
LP4.AD	P.P11114	FTT	NSI + Watcher				
LP4.BA	P.P10101	TP/XF-78	MIP/P50				
LP4.BB	P.P11101	TP/XF-78	MIP/P50 + Watcher				
LP4.BC	P.P10111	TP/XF-78	NSI				
LP4.BD	P.P11111	TP/XF-78	NSI + Watcher				
LP4.CA	P.P10102	TP/XF-1250	MIP/P50				
LP4.CB	P.P11102	TP/XF-1250	MIP/P50 + Watcher				
LP4.CC	P.P10112	TP/XF-1250	NSI				
LP4.CD	P.P11112	TP/XF-1250	NSI + Watcher				

Tabelle 1-2Varianten, Bestellnummern und Typenbezeichnung Easylon
PC/104 Interface

⁴ Das Easylon Watcher Modul ist nicht mehr verfügbar.

Lieferumfang 1.2

- PC-Einsteckkarte mit Echelons MIP/P50 oder NSI
- Installations- und Dokumentations-CD mit .
 - Netzwerktreiber für 32- und 64-Bit Versionen von Windows XP, Vista, 7, 8, Server 2003, Server 2008, Server 2008 R2,
 - WLDV32.DLL für Windows
 - Easylon RNI Software für Fernzugriff auf LON
 - EasyCheck Diagnosesoftware für Easylon Interfaces
 - Dokumentation

Überblick 1.3

Die Easylon Interfacekarten verbindet einen Standard ISA-Bus PC oder einen Industrie PC auf PC/104 Basis mit einem LON Netzwerk. Sie stellen dafür eine Schnittstelle zur Verfügung. Es gibt dabei Varianten für Anschluss über Transformer Coupled Twisted Pair (TP), Free Topology (FTT), FTX Smart Transceiver, Direct Connect oder RS 485.

Als Firmware stehen sowohl MIP/P50 als auch NSI zur Verfügung. Dabei ist MIP die kostengünstigere Lösung mit mehr Speicher, während NSI nur dann benötigt wird, wenn LNS eingesetzt ist.

Das Easylon ISA-Bus Interface verfügt über Service Pin und Service LED. Die LON Schnittstelle der TP und FTT Varianten sind parallel auf zwei Anschlussbuchsen nach außen gelegt, die alternativ benutzt werden können:

- **9polige Sub-D Buchse** •
- 2polige Pin Steck- Schraubklemme •

Das Easylon PC/104 Interface besitzt als Verbindung zum LON Netzwerk einen 10-Pin Flachband-Stiftleiste. Service Pin und Service LED sind optional ebenfalls verfügbar. Die Signale können über die Stiftleiste auch extern genutzt werden.

Die PC/104 Karte ist auch in Ausführungen für einen erweiterten Temperaturbereich verfügbar. Ebenso gibt es hiervon Versionen mit spezieller Schutzlackierung (Coating). Diese Versionen genügen den Norm-Anforderungen der Bahntechnik.

Als moderne Alternative zu den in dieser Dokumentation beschriebenen Standard LonTalk Adaptern stehen bei höheren Anforderungen an die Leistung Easylon Interfaces⁺ gemäß EIA-709.1 zur Verfügung. Informieren Sie sich unter www.gesytec.de.

2

Installation

Die Installation der Easylon Interfacekarte erfolgt in drei Schritten:

- Das Einstellen der Basisadresse auf der Karte
- Dem Einbau in den Rechner
- Der Installation des Netzwerktreibers
- Hinweis: Die Baugruppe wird im Zustand "unconfigured" ausgeliefert. Vor Verwendung als Schnittstelle zum LON Netz muss die Baugruppe in den Zustand "configured" gesetzt werden. Auf dem Markt erhältliche Applikationen wie Netzwerkmanagement-Tools nehmen diese Einstellung automatisch vor oder bieten dem Anwender ein Kommando für diesen Zweck an.

Bei Verwendung der Easylon Interfacekarte in eigenen Applikationen muss diese Einstellung im Programm berücksichtigt werden. Im Kapitel 4 finden sich dazu nähere Hinweise.

Die External Interface Files (.xif) der Interfacekarten finden sich im Verzeichnis XIF der "Easylon Drivers & Documentation" CD. Tabelle 4-1 gibt zeigt die Zuordnung der Dateien zu den verschiedenen Varianten.

2.1 Einstellen der Kartenadresse

Die Easylon Interfacekarte muss für den Einsatz im Rechner konfiguriert werden. Hierzu ist die I/O Basisadresse für den ISA Bus per DIL-Schalter (s. Bild 1-1 bis Bild 1-4) einzustellen. Bevor Sie die Basisadresse einstellen, vergewissern Sie sich anhand der aktuellen PC-Konfiguration welche Adressbereiche belegt werden dürfen.

Bild 2-1 DIL-Schalter

Ist ein Schalter in der oberen Stellung (ON), so ist das Bit ist auf '1' gesetzt. Respektive entspricht ein nach unten geschobener Schalter dem nicht gesetzten Bit, also dem Wert '0'. Von links nach rechts sinkt die Wertigkeit der Adress-Bits 1...8, die Bits 9 und 10 werden dem Benutzer nicht zur Verfügung gestellt, diese stehen fix auf '0'.

Das Bild 2-1 zeigt Ihnen die Default-Einstellung: \$340 = 11 0100 0000

Beispiele	Adresse	A9	A8	A7	A6	A5	A4	A3	A2
	200	1	0	0	0	0	0	0	0
	300	1	1	0	0	0	0	0	0
	320	1	1	0	0	1	0	0	0
	340	1	1	0	1	0	0	0	0
	380	1	1	1	0	0	0	0	0

 Tabelle 2-1
 Einstellen der Kartenadresse

2.2 Einbau der Karte

Bevor Sie die Easylon Interfacekarte einbauen, lesen Sie bitte die beiliegende Montageanleitung. Beachten Sie bitte auch alle Vorschriften des Computerherstellers über den Einbau zusätzlicher Schnittstellenkarten.

- Die Easylon ISA-Bus Interfacekarte (LPC) wird in einen freien 16-Bit ISA-Slot gesteckt.
- Die Easylon PC/104 Interfacekarte (LP4) wird auf den PC/104-Bus-Stecker aufgesteckt.

Zum Anschließen des LON Netzwerkes beachten Sie bitte die Pinbelegung der Stecker, die in Kapitel 3.5 beschrieben ist.

2.2.1 Montage des Ferritkerns

Die Easylon Interfacekarten sind CE zertifizierte Produkte und entsprechen der "Verordnung 2004/108 für Elektromagnetische Verträglichkeit.

Um die elektromagnetische Verträglichkeit nach dieser Verordnung für das Interfacekarte sicherzustellen, ist es erforderlich das Kabel zum LON Netzwerk durch den mitgelieferten Ferritkern zu führen.

Bitte montieren Sie den Ferritkern, wie in Bild 2-2gezeigt,

Bild 2-2 Ferritkern nahe am Stecker montieren

2.3 Treiber-Installation

Für diese Easylon Interfacekarten stehen Treiber unter verschiedenen Betriebssystemen zur Verfügung. Aktuell sind dies Windows XP, Vista, 7 und 8 sowie die Windows Server Betriebssysteme 2003, 2008 und 2008 R2. Die Treiber der Easylon Interfaces sind für die 32-Bit und 64-Bit Versionen der genannten Betriebssysteme verfügbar. Zudem gibt es Treiber für Windows CE, Linux und MS-Dos. Aktualisierte Versionen der Treiber finden Sie im Internet auf den Easylon Support Seiten der Gesytec: <u>www.gesytec.de</u>.

Die Installation ist in den folgenden Abschnitten beschrieben:

Aktuelle Windows Betriebssysteme	Kapitel 2.3.1
Windows 95/NT	Kapitel 2.3.2
Windows und 16 Bit Applikationen	Kapitel 2.3.4
Windows CE (x86)	Kapitel 2.3.5
DOS	Kapitel 2.3.6

In diesem Kapitel finden Sie auch Erläuterungen zur Testprogramm "Easy-Check", sowie zum Einbinden des 32-Bit Treibers zu einer 16-Bit Applikation.

Ein Linux Treiber ist im Quellcode mit Compilier-Anleitung auf der CD im Verzeichnis "Linux" verfügbar. Weitere Angaben finden sich dort.

Die Benutzerführung der Treiber CD bietet verschiedenen Möglichkeiten der Auswahl von Treiber und Dokumentation. Der Start des Setups für das jeweilige Betriebssystem und die vorliegende Interfacekarte ist jedoch ebenso direkt aus der Verzeichnisstruktur der CD aus möglich.

2.3.1 Treiber für Windows Betriebssysteme (WDM-Treiber)

Dieser Abschnitt beschreibt die Installation und das Setup des Treibers für die Easylon Interface Karten unter den genannten Windows Betriebssystemen ab Windows XP.

Das Setup Programm benutzt für alle Betriebssysteme den gleichen WDM-Treiber (Windows Driver Model).

Zum Schluss wird die De-Installation des Treibers erklärt.

2.3.1.1 Installation

Da diese Easylon Interface Karten keine Plug-and-Play-Karten sind, muss die Installation manuell erfolgen. Der Setup wird wie folgt aufgerufen.

Wählen Sie im Windows Explorer auf der CD-ROM das Verzeichnis "Lpclpp". Starten Sie in diesem Verzeichnis die Datei

FastInst.exe

Der Treiber ist so nach wenigen Sekunden mit Standardeinstellungen installiert. Möchten Sie mehrere Karten installieren, so rufen Sie FastInst einfach mehrfach auf und ändern dann manuell die Ressourcen.

Bei dieser Installation wird der Treiber mit folgender der Standardkonfiguration installiert.

E/A-Bereich 340-344, IRQ 5

Soll die Easylon Interfacekarte andere Ressourcen benutzen, so müssen diese nachträglich im Geräte-Manager eingestellt werden.

Eigenschaften von Gesytec LPC340	? ×
Allgemein Erweiterte Einstellungen Tre	iber Ressourcen
Gesytec LPC340	
<u>R</u> essourceneinstellungen:	
Ressourcentyp	Einstellung
E/A-Bereich	0340 - 0343
🛄 Unterbrechungsanforderung (IRQ)	05
Einstellung <u>b</u> asiert auf: Basiskonfigura	tion 0001 📃 🔽
Automatisch konfigurieren	Einstellung ändern
Gerätekonflikt:	
Keine Konflikte.	×
	OK Abbrechen

Alternative Installationsmethoden

Alternativ können Sie die Installation auch mit dem Hardware-Assistent von Windows durchführen. Dies ist allerdings sehr umständlich und langwierig, da Sie sich dafür durch bis zu 15 Fenster klicken müssen.

Wählen Sie bei dieser Art der Installation bitte aus dem Verzeichnis "LPC" als Setup-Datei "LpcWdm.inf" und als Treiber "Gesytec LPC WDM Driver ISA/PC-

104" aus. Einen Vorteil haben Sie bei dieser Installation: die Ressourcen-Auswahl erfolgt bereits vor der endgültigen Installation des Treibers.

2.3.1.2 Update

Um einen bereits vorhandenen Treiber zu aktualisieren, steht eine Update Funktion zur Verfügung. Sie wird wie folgt aufgerufen.

Wählen Sie im Windows Explorer auf der CD-ROM das Verzeichnis "Lpclpp". Starten Sie in diesem Verzeichnis die Datei

FastUpd.exe

Der Treiber ist so nach wenigen Sekunden aktualisiert.

2.3.1.3 Parametrierung

Unter bestimmten Betriebsbedingungen kann es sinnvoll sein, eine Parametrierung der Easylon Interfacekarte vorzunehmen. Dazu wählen Sie im Geräte-Manager unter "LON Adapters" die entsprechende Easylon Interfacekarte aus und betrachten deren Eigenschaften:

Unter "Erweiterte Einstellungen" finden Sie dann Möglichkeiten zur Parametrierung der Interfacekarte:

Lon Adapter

Hier können Sie der Interfacekarte einen Namen von "LON1" ... "LON9" zuweisen, wie ihn bestimmte Applikationen benötigen.

ACHTUNG Der Name darf noch nicht bereits von anderen Treibern belegt sein. Ist der Name schon belegt, so kann das Gerät nicht gestartet werden (Code 10).

Adapter Name

Alternativ kann auch ein beliebiger, frei wählbarer Adaptername (z.B. "Haus 7") vergeben werden.

Anmerkung Werden sowohl "Lon Adapter" als auch ein "Adapter Name" vergeben, so wird nur der Eintrag bei "Lon Adapter" verwendet.

Debug Flag

Dieser Wert umfasst ein DWORD in hexadezimaler Notation von verschiedenen Flags zu Debug Zwecken. Es steht normalerweise auf 0 (= "nicht vorhanden"). Durch Setzen der einzelnen Bits können bestimmte Debug Features eingeschaltet werden. Derzeit sind die Bits 0, 1 und 2 benutzt.

Bit 0: Es werden LON-Telegramme an der Schnittstelle von und zur Applikation über Debug Output angezeigt.

- Bit 1: Es werden LON-Telegramme an der Schnittstelle vom und zum Neuron-Chip über Debug Output angezeigt.
- Bit 2: Es werden Telegramme an der Schnittstelle vom und zum Watcher⁵ über Debug Output angezeigt.
- Bit 3: Es wird Öffnen (CREATE) und Schließen (CLOSE) des Treibers über Debug Output angezeigt.
- Hinweis:Der Debug Output kann z.B. mit dem Programm DebugView angezeigt werden,
welches unter www.sysinternals.com frei erhältlich ist.

Firmware

Es werden die Optionen MIP/NSI bzw. EEBLANK angezeigt. Die Einstellungen sind für zukünftige Versionen vorgesehen und haben z.Z. noch keinen Einfluss.

Permitted Power Saving

Normalerweise erlaubt die Easylon Interfacekarte bei laufenden Applikationen sowohl den Stand-by-Modus (Standby) als auch den Ruhezustand (Hibernate). Unter bestimmten Bedingungen kann es jedoch unerwünscht sein, wenn der Rechner bei laufenden LON-Applikationen in den Ruhezustand oder Stand-by-Modus geht. In diesen Fällen können Ruhezustand (Auswahl: Standby) oder Ruhezustand und Stand-by-Modus (Auswahl: None) unterbunden werden.

2.3.1.4 Deinstallation

Die Treiber können über den "Geräte-Manager" de-installiert werden. Wählen Sie unter "LON Adapters" den Treiber "Gesytec LPCxxx" aus und klicken Sie mit der rechten Maustaste auf "Deinstallieren".

2.3.2 Windows 95 / NT Treiber

Dieser Abschnitt beschreibt die Installation und das Setup des Easylon Interface Treibers für die Betriebssysteme Windows 95 und Windows NT.

Das Setup Programm installiert abhängig vom Betriebssystem automatisch den richtigen Netzwerktreiber.

Zum Schluss wird die De-Installation des Treibers erklärt.

⁵ Das Easylon Watcher Modul ist nicht mehr verfügbar.

2.3.2.1 Installation

Der Setup kann aus der Benutzerführung der "Driver & Documentation" CD gestartet werden.

Direkt von der Treiber-CD wird der Setup wie folgt aufgerufen: Wählen Sie im Windows Explorer auf der CD-ROM das Verzeichnis "Setup". Starten Sie in dem Unterverzeichnis das zu der vorliegenden Interfacekarte gehört –also aus "Easylon PC + PC-104 Interface 95+NT"– die Datei

Setup.exe

Während der Installation werden Sie nach einem Zielverzeichnis gefragt, in das Treiber, Zusatzprogramme und die Demo Sourcen installiert werden sollen. Sie können beliebig den voreingestellten Pfad akzeptieren oder einen eigenen definieren.

Am Ende der Installation erscheint folgender Dialog:

Easy	lon PC Driver cor	nfiguration ¥1.63	×
	OS Version : I/O Address : IRQ :	Windows NT 0x340 5	
[OK)	Cancel	

Hier sind die I/O-Basisadresse der Easylon Interfacekarte und der Interrupt (IRQ) einzustellen.

Dieser Treiber unterstützt nur eine Interfacekarte je Rechner. Anmerkung:

2.3.2.2 Deinstallation

Die Treiber können über die "Systemsteuerung" de-installiert werden. Verwenden Sie das Programm "Software" aus der Systemsteuerung. Wählen Sie "Easylon PC Interface" und klicken Sie auf "Hinzufügen/Entfernen". Nach der Deinstallation ist ein System-Neustart sinnvoll.

2.3.3 EasyCheck – Test Utility für die Windows Treiber

Zusätzlich zum Treiber kann das Testprogramm "EasyCheck" in das Installationsverzeichnis (Standard: \Easylon\Lpx) installiert werden. Diese Utility prüft Interface und Softwareumgebung und erlaubt Rückschlüsse auf die möglichen Ursachen bei Problemen an denen das Interface beteiligt sein kann.

Das Programm "EasyCheck" führt eine Analyse der Software auf dem System durch. Es öffnet das ausgewählte Interface, überprüft die Version des Treibers und zeigt diese am Bildschirm an. Durch das Senden eines "query status"-Befehls wird die Kommunikation zur Hardware getestet. Außerdem wird durch ein "read memory" festgestellt, ob die Instanz MIP- oder VNI verwendet. Korrekt installierte Easylon Interfacekarten schicken eine entsprechende Antwort.

2.3.4 Windows und 16 Bit Applikationen

Der Windows Treiber für die 32-Bit Versionen der unterstützten Betriebssysteme unterstützt auch ein 16-Bit Interface. (Leider unterstützt Microsoft dies nicht für die 64-Bit Versionen). Um das 16-Bit Interface zu benutzen, muss die nachstehende Zeile in die Datei "config.nt" im Verzeichnis "windows\system32" (das Verzeichnis kann auf Ihrem Rechner auch anders heißen) eingetragen werden:

Device=%SystemRoot%\system32\lpxdos.exe-Llpcwdm340

Eine nähere Spezifikationen des benutzten 32 Bit LON-Device erfolgt über den optionalen Parameter:

/Lname

name =

lpcdrv

für Device EasyLPC mit der Nummer 1

Anmerkung: Bei der Eingabe beachten Sie bitte die 2 aufeinander folgenden "l" vom Parameter –L bzw. /L und dem unmittelbar folgend Namen lxxxx.

Eine nähere Spezifikationen des zur Verfügung gestellten 16 Bit LON-Device erfolgt über den optionalen Parameter:

/Dn mit n = 1...9 für LON1 bisLON9

Machen Sie keine explizite Angabe, erfolgt die Zuordnung auf den ersten freien Namen, beginnend bei "LON1".

2.3.5 Windows CE Treiber

Der Windows CE Treiber ist für x86 Prozessoren konzipiert. Auf Anfrage können Varianten für andere Prozessoren erstellt werden. Es gibt Versionen bis Windows CE 6.0.

Hinweis: Prüfen Sie vor Verwendung des Interfaces, ob Ihr Windows CE System überhaupt USB unterstützt, indem Sie zum Beispiel ein USB Gerät wie Maus, Tastatur oder Memory-Stick anschließen.

> Der Windows CE Treiber liegt als DLL mit dem Namen lonusb.dll vor. Wie alle Windows CE Treiber muss dieser Treiber im Windows Verzeichnis liegen. Die Dateien hierzu finden sich auf der Driver & Documentation CD unter Drivers/Windows CE/....

Soll der Treiber in ein Windows CE Image integriert werden, so geschieht das am einfachsten durch einen entsprechenden Eintrag in der platform.bib Datei, dieses Vorgehen ist bei allen Windows CE Versionen ähnlich.

Der Treiber benötigt für die korrekte Funktion Einträge in der Registry. Diese Einstellungen sind in der Datei lonusb.reg zu finden. Für die Integration in ein Windows CE Image ist der Inhalt dieser Datei in die platform.reg zu kopieren.

```
; LONUSB - Driver
[HKEY_LOCAL_MACHINE\Drivers\USB\LoadClients\3596\Default
\Default\LonUsb]
"DLL"="lonusb.dll"
"Prefix"="LON"
"DebugFlag"=dword:0
"ReadTimeout"=dword:FFFFFFF
```

2.3.6 DOS Treiber

Der Netzwerktreiber für den Betrieb der Easylon Interfacekarten unter MS-DOS wurde gemäß Spezifikation der Firma Echelon entwickelt. Ausführliche Informationen zum Erstellen von Applikationen, z.B. eines eigenen Treibers, finden Sie im "LONWORKS Host Application Programmer's Guide" von Echelon.

Der Treiber ist auf der mitgelieferten Installations-CD-ROM im Verzeichnis "DOS" zu finden. Er existiert in zwei Versionen

- ohne Interrupt "lpcdrv.exe"
- mit Interrupt "lpcdrv2.exe".

Die Treiberdatei "lpcdrv.exe" bzw. "lpcdrv2.exe" muss von der CD-ROM auf Ihren Computer kopiert werden, z.B. in ein Verzeichnis C:\easylon.

Der Netzwerktreiber für die Easylon Interfacekarten benötigt 1,6 KByte residenten Programmcode, 2 KByte Outputbuffer und 2, 4 oder 8 KByte Inputbuffer.

2.3.6.1 Installation

Der Netzwerktreiber wird in Ihrem Computer als Device auf den ersten freien Namen, beginnend bei "LON1:" installiert, indem Sie ihn in der "Config.sys" Datei mit folgender Zeile eintragen

device={*pfad*}\lpcdrv2.exe /A[*port address*] /Q[*irq nr*]

oder

devicehigh={pfad}\lpcdrv2.exe /A[port address] /Q[irq nr]

Unter *{pfad}* ist das Verzeichnis anzugeben, in das die Treiberdatei kopiert wurde. Unter *[port address]* ist die auf der Karte durch die DIL-Schalter eingestellte Basisadresse einzutragen. Für die Einstellung der Standard Port Adresse und dem IRQ 10 (0Ah) und mit den o.g. Beispielspfad lautet die Zeile:

device=C:\easylon/lpcdrv2.exe /A340 /QA

Optionen

Weiter stehen folgende Optionen zur Verfügung:

 /A Dieser Parameter spezifiziert die Portadresse in hexadezimaler Darstellung. Er muss immer angegeben sein, falls nicht die Default-Adresse (340h) verwendet wird. Adressen, die sich auf die Standardperipherie beziehen (COM1: – COM4:, LPT1: – LPT3:, Diskettenlaufwerk, Festplatte, Videoadapter und der I/O Module auf der Motherboard) dürfen nicht benutzt werden! Sollte eine solche Peripherieadresse angegeben werden, erfolgt die Fehlermeldung:

No or invalid port address

Wird eine zulässige Adresse angegeben, ohne dass eine Interfacekarte auf dieser Adresse gefunden wird, erfolgt die Meldung:

Interface card is not responding

/Q (nur lpcdrv2.exe)

Dieser Parameter spezifiziert die IRQ-Nummer in hexadezimaler Darstellung. Er muss immer angegeben sein, falls nicht der Default-IRQ (5) verwendet wird. Folgende IRQs sind möglich: 3, 5, 7, 9, A, B, C oder F Sollte ein nicht zulässiger IRQ angegeben werden, erfolgt die Fehlermeldung:

Error: Only IRQ 3,5,7,9,A,B,C or F allowed

/D Setzt die Device Nummer

Für die Interfacekarte können Device Nummern zwischen 1 und 9 (LON1: – LON9:) verwendet werden. Wird keine Nummer angegeben, so wird die kleinste freie Nummer verwendet.

Benutzt ein bereits installierter Treiber die angegebene Device Nummer, so erfolgt die Fehlermeldung:

Invalid or duplicate device name

Fehlt hinter der Optionskennung /D die Angabe eines Wertes oder wird die Option /D nicht angegeben, so wird automatisch eine gültige Nummer eingesetzt. Sind alle möglichen Device Nummern vergeben, so erfolgt die Meldung:

LON1: ... LON9: already defined

/I Erhöhen des Eingangspuffers

Ein- und Ausgangspuffer der Easylon Interfacekarte sind als "byte-level FIFOs" ausgelegt, d.h. der benötigte Speicherplatz hängt von der Nachrichtenlänge ab. Hieraus folgt, dass eine Speichergröße von 2 KByte (Default Wert, entsprechend ca. 50–100 Meldungen) normalerweise ausreichen sollte. Müssen mehr Informationen zwischengespeichert werden, kann die Größe des Eingangspuffers erhöht werden. Zulässige Werte für den Parameter /I sind 2, 4 und 8 (KByte).

Anstatt des Schrägstriches "/" kann auch das Minuszeichen "-" zur Kennzeichnung der Optionen verwendet werden. Die Schreibweise der Optionen ist unabhängig von Groß-/Kleinschreibung.

Die Installation mehrerer Easylon PC (PC/104) Interfacekarten

Der Netzwerktreiber unterstützt jeweils nur eine Interfacekarte. Möchten Sie mehrere Geräte betreiben, ist der Treiber so oft in der "config.sys" mit verschiedenen Adressen einzutragen, wie Interfacekarten installiert werden sollen. Wird beim Laden festgestellt, dass bereits ein Easylon Netzwerktreiber installiert ist, so wird die Copyright Meldung nicht mehr angezeigt.

2.3.6.2 Anzeigen der installierten Treiber

Mit der Datei "lpcdrv.exe" können die im System installierten Netzwerktreiber angezeigt werden. Sie wird wie jedes DOS-Programm gestartet. Es werden die Namen und die benötigte Speichergröße eines jeden Treibers angezeigt.

/R Die Option /R ermöglicht ein nachträgliches Ändern einer Device Nummer.

Beispiel:	lpcdrv -r13
	ändert die Device Nummer von LON1: in LON3:

Ist die erste Device Nummer nicht vergeben, oder ist die zweite Nummer bereits von einem anderen Treiber in Gebrauch, so erfolgt die Meldung:

Invalid or duplicate device name.

Das Umbenennen der Device Nummer ist nicht auf die von Easylon Interface Netzwerktreiber definierten Schnittstellengeräte beschränkt. Es kann auch aus einer Windows DOS-Box heraus als globale Funktion auf das gesamte System, inklusive 16-Bit Windows-Applikationen, angewendet werden.

Technische Beschreibung

Dieses Kapitel beschreibt die ISA-Bus Interfacekarte und drei Generationen von Easylon PC/104 Interfaces. Letztere unterscheiden sich in der Typenkennung durch "LP4", "LP42" bzw. "LP43". Sofern erforderlich wird diese Bezeichnung hier ebenfalls zur Unterscheidung verwendet.

3.1 Netzwerk Interface

Die Easylon Interfacekarten basieren auf dem NEURON 3150[®] Chip. Dieser arbeitet unter MIP/P50, mit bis zu 32 KByte ROM als Programmspeicher und 24 KByte SRAM als Datenspeicher. Unter NSI stehen 48,75 KByte ROM und 9 KByte SRAM zur Verfügung. Der NEURON Chip ist im Slave_A Mode an den ISA-Bus gebunden.

Zur Überwachung des NEURON Chips ist ein Reset Flipflop auf der Karte implementiert. Ein NEURON-Reset kann im PC identifiziert werden, indem Sie das Status-Byte auslesen. Gleiches gilt auch für das Interrupt Flipflop.

Zur Anzeige des Knotenstatus ist eine Service LED und zum Aktivieren der Servicefunktion des Neuron Chips der Service Pin verfügbar; (Bild 1.1: (1) + (2) bzw. Bild 1.2 - 1.4: (1)+(2)).

3.2 ISA Bus Interface

Das ISA-Bus Interface wurde als 8-Bit I/O Interface entsprechend der Spezifikation "Personal Computer Bus Standard P996" entwickelt. Abweichungen der PC/104 Karte sind in "PC/104 Specification, Version 2.3" dokumentiert.

Die Easylon Interfacekarte ist über 4 I/O-Adressen an den ISA-Bus gekoppelt, deren Basisadresse per DIL-Schalter auf der Karte eingestellt wird (s. Kapitel 2.1). Die benötigten Adressen unterteilen sich in zwei Adressen für die Kommunikation zwischen PC und Netzwerkknoten (der Interfacekarte), eine Adresse für Statusabfrage und Steuerung des NEURON Chip, sowie eine Adresse für den Watcher.

3.3 Reset, Systemsteuerung

Ein Reset des NEURON Chip auf der Interfacekarte kann vom PC programmgesteuert initiiert werden. Nach einem System-Reset startet der NEURON Chip automatisch.

3.4 Blockdiagramm

Bild 3-1 Blockdiagramm Easylon ISA-Bus Interfacekarte

Bild 3-2 Blockdiagramm Easylon PC/104 Interfacekarte

3.5 Steckerbelegung

Achtung: Unabhängig von der Wahl des benutzen Steckers muss aus EMV-Gründen der mitgelieferte Ferritkern, wie in Kapitel 2.2.1 beschreiben, auf das Netzwerkkabel montiert sein.

3.5.1 Easylon ISA-Bus Interface

Die Easylon ISA-Bus Interfacekarte verfügt über einen 9-poligen Sub-D Stecker (Bild 1-1, (4)) für die Verbindung mit dem LON Netzwerk. Die TP/XF und FTT Varianten verfügen zusätzlich über eine 2-polige Steck-Schraubklemme (Bild 1-1, (3)), die alternativ zum 9-poligen Sub-D Stecker benutzt werden kann.

Steckertyp	Pin	Signal	Bemerkung
9-polig Sub-D	1	Data	Datenleitung
	2	Data	Datenleitung
	3	-	Reserviert
	4	-	Reserviert
	5	-	Reserviert
	6	-	Reserviert
	7	-	Reserviert
	8	-	Reserviert
	9	-	Reserviert
2-pol. Steck-	1	Data	Datenleitung
Schraubklemme	2	Data	Datenleitung

Tabelle 3-1Steckerbelegung für die TP/XF und FTT Varianten der Easy-
lon ISA-Bus Interfacekarte

Steckertyp	Pin	Signal	Bemerkung
9-pol. Sub-D	1	-	Reserviert
	2	-	Reserviert
	3	DA-	Datenleitung
	4	SA-	RTS –
	5	-	Reserviert
	6	+5 V	U+ Versorgungsspannung, elektrisch isoliert
	7	0 V	U- Versorgungsspannung, elektrisch isoliert
	8	DA+	Datenleitung
	9	SA+	RTS +

Tabelle 3-2Steckerbelegung für die RS485 Variante der Easylon ISA-Bus
Interfacekarte

3.5.2 Easylon PC/104 Interface

Die Easylon PC/104 Interfacekarte ist in allen in Varianten (abgesehen von kundenspezifischen Abweichungen) über eine 10-polige Flachband-Stiftleiste (IDC) an das LON Netzwerk anzuschließen. Unterschiede gibt's es jedoch in den Kartengenerationen.

Steckertyp	Pin	Signal	Bemerkung
IDC	1	-	Reserviert
	2	-	Reserviert
	3	-	Reserviert
	4	-	Reserviert
	5	-	Reserviert
	6	-	Reserviert
	7	Data	Datenleitung
	8	-	Reserviert
	9	Data	Datenleitung
	10	-	Reserviert

 Tabelle 3-3
 Steckerbelegung f
 ür "LP4" Easylon PC/104 Interface

Steckertyp	Pin	Signal	Bemerkung
10pol. LON An-		optional:	Anschluss externer Service LED
schluss	1	SERVICE	3,3 V, 10 mA; High = ON
	2		Reserviert
		optional:	
	3	RxLED	LON Traffic Rx*
	4		Reserviert
		optional:	
	5	TxLED	LON Traffic Tx*
	6		Reserviert
	7	Data	LON A
	8		Reserviert
	9	Data	LON B
	10	Shield	Schirm

 Tabelle 3-4
 Steckerbelegung f
 ür "LP42" Easylon PC/104 Interface

Technische Beschreibung

ISA-Bus Interface Handbuch

Steckertyp	Pin	Signal	Bemerkung
10pol. LON	1	Data	LON A
Anschluss	2	Data	LON A
Bild 1-2, (4)	3	nc	frei
	4	nc	frei
	5	Data	LON B
	6	Data	LON B
	7	nc	frei
	8	nc	frei
	9	shield	Schutzerde, muss ange-
	10	shield	<u>schlossen werden</u>

Tabelle 3-5	Steckerbelegung f	ür "LP43"	Easylon F	PC/104 Interface
		,,	•	

Die Variante LP43.FBB verfügt über einen Stecker zum externen Anschluss von Signalen, Zur Anschlussbeschreibung s. 3.7, "Anschluss externer LEDs".

Steckertyp	Pin	Signal	Bemerkung
Stecker Signal	1	dig. GND	
Anschluss	2	Service Tast-	s. Kap. 3.7
Bild 1-2: (8)		er	
	3	dig. GND	
	4	Service LED	s. Kap. 3.7
	5	dig. GND	
	6	RX LED	LON Traffic, s. Kap. 3.7
	7	dig. GND	
	8	TX LED	LON Traffic, s. Kap. 3.7
	9	dig. GND	
	10	VCC	5 V

 Tabelle 3-6
 Belegung 8poliger Stecker f
 ür externe Signale bei LP43.FBB

3.6 Service LED

Die Service LED (Bild 1-1, Bild 1-4: (2) bzw. Bild 1-3, Bild 1-2: (1)) signalisiert den Knotenstatus der Easylon Interfacekarte. Es sind folgende der Service LED Signale definiert:

Service LED	Status	Bemerkung
Blitz (1Hz)	Kein Treiber geladen, oder Treiberkonflikt	Prüfen Sie die Treibereinstellun- gen. IRQ-, Adressenkonflikt mit anderen Karten?
Blinkt (1/2Hz)	Treiber ist installiert, Knoten ist "unconfigu- red" ⁶ .	Knoten auf "configured" setzen
Konstant AN	Karte ist "applicationless" und "unconfigured".	
Konstant AUS	Installation ok	normaler Betriebszustand

 Tabelle 3-7
 Service LED Bedeutung

3.7 Anschluss externer LEDs

Diese Option steht für Easylon PC/104 Interfaces vom Typ LP42.xxx und LP43.xxx zur Verfügung. Die Art des LED Anschlusses ist vom Transceiver der Karte abhängig.

FFT-10

⁶ Auslieferungszustand

Bild 3-3 Anschluss externer LEDs bei LP42

3.8 Technische Daten

3.8.1

A	Allgemeine Daten			
H	Bus Interface	8 Bit Daten (I/O) gemäß Personal Computer Standard P996 (PC/104 Specification, Version2.3)		
	I/O Adressen	4, Einstellung über DIL-Schalter		
	Steuerregister	8 Bit		
	Statusregister	8 Bit		
	Interrupts	3, 5, 7, 9	, 10, 11, 12, 15, per Software einstellbar	
(CPU	NEURON LP43: 20	3150, 10 MHz) MHz	
	Kopplung	parallel,	Slave_A Mode	
	Speicher			
	MIP/P50:	ROM	32 KByte	
	NSI :	RAM ROM RAM	24 KByte 48.75 KByte 9 KByte	
S	pannungsversorgung;	5 V, von	n PC	
Ι	.eistungsaufnahme	typisch 1	.5 W	
]	F emperatur Betrieb Lagerung	0 °C bis -20 °C b	+50 °C is +60 °C	
ŀ	Kompatibilität	LonTalk, EIA-709.1		
I	Feuchtigkeit	nach DI	N 40040, Klasse F	

3.8.2 Easylon ISA-Bus Interface

Abmessungen	160 mm x 107 mm, für kurzen 16-Bit ISA Slot
EMV	EN 50 081-1
	EN 50 082-1

Netzwerkinterface

Bestellcode*	Netzwerk Interface	Übertra- gungsrate	Stecker	Überspannungs- schutz
P.P10001 P.P10011 P.P11001	TP/XF	78 kbps	9-polig Sub-D + 2polig Steck- Schraubklemme	Sparc Gaps
P.P10002 P.P10012 P.P11002	TP/XF	1.25 Mbps	9-polig Sub-D + 2polig Steck- Schraubklemme	Sparc Gaps
P.P10003 P.P10013 P.P11003	RS485, galvanisch getrennt	39 kbps	9-polig Sub-	Zener Diode
P.P10004 P.P10014 P.P11004	FTT	78 kbps	9-polig Sub-D + 2polig Steck- Schraubklemme	Sparc Gaps

* zur Identifikation des Kartentyps siehe Tabelle 1-1.

3.8.3 Easylon PC/104 Interface

Abmessungen

90,2 mm x 95,7 mm, für PC/104 Computer

Temperatur	erweiterter	Bereich
------------	-------------	---------

Betrieb	-40 °C bis +85 °C
Lagerung	-40 °C bis +85 °C
EMV	EN 55 022 A/B EN 61 000-2
Kompatibilität	EN 50 155 bei Versionen mit erweitertem Tempe- raturbereich (muss im Zielsystem überprüft wer- den)

Netzwerkinterface

Bestellcode*	Netzwerk Interface	Übertra- gungsrate	Stecker	Überspannungsschutz
P.P10101	TP/XF	78 kbps	IDC	Sparc Gaps
P.P10111		-		
P.P11101				
P.P10601				
P.P10611				
P.P10102	TP/XF	1.25 Mbps	IDC	Sparc Gaps
P.P10112		_		
P.P11102				
P.P10602				
P.P10612				
P.P10603	RS485	39 kbps	IDC	Zener Diode
P.P10613	galvanisch	_		
	getrennt			
P.P10104	FTT	78 kbps	IDC	Sparc Gaps
P.P10114				
P.P11104				
P.P10604				
P.P10614				
P.P10605	Direct	1.25 Mbps	IDC	Diode
P.P10615	Connect			
P.P10605	FTX	78 kbps	IDC	Sparc Gaps
P.P10615		_		-
P.P73106	FT-X1	78 kbps	IDC	Isolation bis 1 KV
		-	gewinkelt	Sparc Gaps
			90°	Common Mode Choke

* zur Identifikation des Kartentyps siehe Tabelle 1-2.

3.9 Elektromagnetische Verträglichkeit

Die Easylon Interfacekarten sind CE zertifizierte Produkte und entsprechen der Verordnung 2004/108 EG für Elektromagnetische Verträglichkeit

Um die elektromagnetische Verträglichkeit nach dieser Verordnung während des Betriebs sicherzustellen, muss der mitgelieferte Ferritkern um das Kabel zum LON Netzwerk gelegt werden.

Bitte montieren Sie den Ferritkern, wie in Bild 2-2 gezeigt, möglichst nahe am Stecker auf der Karte. Die Distanz zwischen Ferritkern und Stecker darf nicht mehr als 10cm betragen. Stellen Sie sicher, dass der Ferritkern fest sitzt und sich nicht verschieben lässt.

4

Programmierhinweise

Dieses Kapitel gibt Programmierhinweise zu den Easylon Interfacekarten.

4.1 LONWORKS Netzwerk Knoten

Die Easylon Interfacekarte ist ein Netzwerkknoten im LON Netz. Sie arbeitet mit Echelons Microprocessor Interface Programm MIP/P50 oder mit NSI auf einem NEURON 3150 Chip als Kommunikations-CPU. Die zugehörigen "external interface files" (.xif) finden Sie zusammen mit dem Netzwerktreiber für DOS auf der mitgelieferten CD-ROM. Die Zuordnung von ".xif"-Datei und Kartentyp entnehmen Sie bitte der folgenden Tabelle.

Netzwerk Interface	Übertragungsrate	XIF -Datei
TP/XF	78 kbps	lolp072f.xif
TP/XF	1.25 Mbps	lolp073f.xif
RS485, galvanisch getrennt	39 kbps	lolp074f.xif
FTT	78 kbps	lolp075f.xif

 Tabelle 4-1
 Zuordnung der .xif Dateien

4.1.1 Netzwerk-Interface

Die verschiedenen Netzwerk-Interface-Varianten arbeiten direkt über den Kommunikationsport (CP0...CP4) des NEURON Chip. Die Konfiguration erfolgt bei der MIP/P50 Firmware automatisch und ist für die NSI Varianten durch die "EasyCheck" Utility entsprechend vorzunehmen.

4.1.2 CPU

Der Netzwerk-Interfaceknoten ist auf der Basis des NEURON 3150 Chip entwickelt. Die Taktrate beträgt 10MHz. Der Prozessor ist bei Betrieb unter MIP/P50 mit 32 KByte ROM als Programmspeicher und mit 24 KByte SRAM als Datenspeicher ausgelegt. Unter NSI stehen 48,75 KByte ROM und 9 KByte SRAM zur Verfügung.

Alle 11 I/O Ports des NEURON Chip werden für die Koppelung an das ISA-Businterface verwendet.

Der Status des "Service Pin" des NEURON Chip wird über die Service LED angezeigt; seine Servicefunktion kann über den Service Taster aktiviert werden. (s. Bild 1-1, Bild 1-4: (1) bzw. Bild 1-2, Bild 1-3: (2))

Der NEURON Chip ist im Slave_A parallel Mode gekoppelt. Das Handshake Bit, das durch den NEURON Chip (NHS) zur Kontrolle des Datenflusses definiert ist, kann mittels Statusbyte der Easylon Interfacekarte überwacht werden. Weiterführende Informationen zum Datenkommunikations-Mechanismus im Slave_A Mode finden Sie im NEURON 3150 Chip Datenblatt

4.1.2.2 Interrupt Funktion NEURON Chip -> ISA-Bus

Ein Interrupt Flipflop wird über einen Schreibzugriff auf eine vordefinierte Adresse gesetzt, die durch den Host über I/O Adressen-Zugriff zurückgesetzt (acknowledged) werden kann.

Das Zurücklesen des Interrupt-Status durch den NEURON Chip ist nicht möglich.

4.1.2.3 NEURON Chip Adressbelegung

Adressenbereich			Module
\$0000 \$7FFF	&	Read	ROM 32 KByte, Programmspeicher
\$8000 \$DFFF	&		SRAM 24 KByte, Datenspeicher
	Read	/Write	
\$E000 \$E7FF	&	Write	Setzen des Interrupt Flipflop
\$E800 \$FFFF			NEURON Chip interna

Tabelle 4-2NEURON Chip Adressbelegung für MIP/P50

Adressenbereich	Module
\$0000 \$C2FF & Read	ROM 48,75 KByte, Programmspeicher
\$C300 \$D6FF &	SRAM 9 KByte, Datenspeicher
Read/Write	
\$E700 \$E7FF & Write	Setzen des Interrupt Flipflop
\$E800 \$FFFF	NEURON Chip interna

Tabelle 4-3 NEURON Chip Adressbelegung für NSI

Anmerkung: Das Setzen des Interrupt Flipflop erfolgt datenunabhängig.

4.2 Baugruppenstatus

Eigene Applikationen mit dem Easylon PC (PC/104) Interface müssen den Zustand der Baugruppe korrekt verwalten. Dazu wird hier ein Codefragment gezeigt. Die dazu verwendeten Strukturen sind der sogenannten HOST APPLICATION der Firma Echelon entnommen. Diese ist auf der Web-Seite der Firma Echelon (www.echelon.com) verfügbar.

```
#pragma pack(1)
#define NM update domain 0x63
#define NM_set_node_mode 0x6C
#define SVC_request 0x60
#define niRESPONSE 0x16
                                0x22
#define niLOCAL
#define niRESET
                                       0x50
#define LDV OK 0
typedef struct {
                                 // cmd[7..4]
      BYTE cmq;
                                                                                       queue[3..0]
      BYTE len;
     BYTE svc_tag; // 0[7] Service[6..5] auth[4] tag[3..0]
BYTE flags; // prio path cplcode[5..4] expl altp pool
                                   // prio path cplcode[5..4] expl altp pool resp
      BYTE data len;
      BYTE format;
                                   // rcv: domain[7] flex[6]
      union {
           struct {
                BYTE dom_node; // domain[7] node/memb[6..0]
BYTE rpt_retry; // rpt_timer[7..4] retry[3..0]
BYTE tx_timer; // tx_timer[3.
BYTE dnet_grp; // destination subnet or group
BYTE nid[6]; // NEURON ID
                                                                                     tx timer[3..0]
            } send;
                 struct {
                 BYTE snet; // source subnet
BYTE snode; // source node
BYTE dnet_grp; // destination subnet or group
BYTE dnode_nid[7]; // destination node or NEURON ID
            } rcv;
            struct {
                uct {BYTE snet;// source subnetBYTE snode;// source nodeBYTE dnet;// destination subnetBYTE dnode;// destination node
                 BYTE group;
                 BYTE member;
                 BYTE reserved[4];
           } resp;
      } adr;
      BYTE code;
                                                // message code or selector MSB
      BYTE data[239];
} ExpAppBuf;
ExpAppBuf msg_out; // Explicit message buffer for outgoing messages
ExpAppBuf msg_in; // Explicit message buffer for incoming messages
ExpAppBuf msg_rsp; // Explicit message buffer for response messages
```


37/47

Programmierhinweise


```
int ni handle;
BYTE my domain[15] =
   {0,0,0,0,0,0,0,0x01, 0xC0, 0, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
int send local( int len ) {
   int ldv err;
   msg out.cmg = niLOCAL;
   msg out.svc tag = SVC request;
   msg_out.flags = 8;
   msg out.len = len + 15;
   msg_out.data_len = len + 1;
   if( ldv write( &msg out, len + 17 ) ) return(0);
   while(1) {
       ldv_err = ldv_read( &msg_in, 256 );
       if( ldv err == LDV OK ) {
                                                 // Local reset
           if (msg in.cmq == niRESET) return(0);
           if(msg_in.cmq == niRESPONSE) {
           memcpy(&msg_rsp, &msg_in, msg_in.len + 2);
           return(1);
                                                    // Ok
           }
       }
    }
    return(0);
}
int set config online() {
   msg_out.code = NM_update_domain;
                                                // Domain index 0
   msgout.data[0] = 0;
   memcpy( &msg out.data[1], &my domain, 15); // Subnet 1, Node 64
   if( !send local(16)) return(0);
   msg out.code = NM set node mode;
   msg_out.data[0] = 3;
                                                // Change state
                                                // Configured online
   msg out.data[1] = 4;
   if( !send local(2)) return(0);
                                                // Success
   return(1);
}
```


4.3 ISA-Bus Interface

Das ISA-Bus Interface wurde als 8-Bit I/O Interface gemäß der Spezifikation "Personal Computer Bus Standard P996, Draft D2.01" implementiert.

Diese Karte belegt einen Adressbereich von vier I/O Adressen:

Aus Gründen des Timings wird die Steuerinformation für den Datenfluss (NEURON-Chip und Datentreiber) nicht aus den Schreib- und Leseimpulsen des ISA-Busses abgeleitet, sondern ein adressbasierendes Verfahren angewendet. Zwei I/O-Adressen sind für diesen Zweck reserviert.

Der PC verwendet je ein 8-Bit Steuer- und Statusregister im ISA-Bus Interface für die Steuerung und Zustandsüberprüfung des NEURON.

4.3.1 I/O-Adresstabelle

Basisa	dresse +	Device
\$000 .	& Read/Write	Data port watcher
\$001 d	& Write	Write control byte
\$001 d	& Read	Read status Byte
\$002 .	& Read	Read data, NEURON Chip
\$002 a	& Write	Reset interrupt Flip-flop from NEURON Chip
\$003	& Write	Write data, NEURON Chip
\$003	& Read	Not assigned

Tabelle 4-4 I/O-Adresstabelle, ISA-Bus

Besonderheit für LP42, LP43

Basis Adresse +	Device
\$002 & Write	Reset Interrupt Flip-flop des NEURON Chip. Bei NSI schreibe "0", bei MIP schreibe "1".

Signalaufbau bei Interrupt Flip-Flop Reset

Da die Bitkombination zugleich den Firmware Modus einstellt (MIP oder NSI), muss ein spezielles Byte beim Reset des Interrupt Flip-Flop geschrieben werden.

Datenbit	Beschreibung
D7D2	reserviert, muss 0 sein
D1, D0	00: NSI,
	01: MIP,
	10: reserviert
	(arbeitet wie NSI)
	11: EEBLANK

4.3.1.1 Signalaufbau Steuer-Byte

Datenbit	Signal	Beschreibung
D7	EIN	Interrupt enable, s. Tabelle 4-66
D6	IL2	Interrupt select, s. Tabelle 4-6
D5	IL1	Interrupt select, s. Tabelle 4-6
D4	IL0	Interrupt select, s. Tabelle 4-6
D3	NSERV	NEURON Chip Service Pin, HIGH aktiv
D2	/NCF	NEURON Chip Clear Reset Flip-flop, LOW
		aktiv
D1	WTCRES	Watcher Reset, HIGH aktiv
D0	NRES	NEURON Chip Reset, HIGH aktiv

Tabelle 4-5Signalaufbau Steuer-Byte

Das Steuer-Byte der Interfacekarte wird mit jedem Einschalten zurückgesetzt; das Reset-Signal zum NEURON Chip und der Service-Pin sind nicht aktiv.

Interrupts	D7	D6	D5	D4
Disabled	0	Х	Х	Х
IRQ 3	1	0	0	0
IRQ 5	1	0	0	1
IRQ 7	1	0	1	0
IRQ 9	1	0	1	1
IRQ 10	1	1	0	0
IRQ 11	1	1	0	1
IRQ 12	1	1	1	0
IRQ 15	1	1	1	1

Tabelle 4-6Bit D7...D4 des Steuer-Bytes

Daten Bit	Signal	Beschreibung
D7	EIN	Read back D7 des Steuerregisters
D6	IL2	Read back D6 des Steuerregisters
D5	IL1	Read back D5 des Steuerregisters
D4	IL0	Read back D4 des Steuerregisters
D3	/NINT	Status des NEURON Chip Interrupt Flip-Flop, LOW aktiv
D2	/NRF	Status des NEURON Chip Reset Flip-Flop, LOW aktiv
D1	/WTCHS	Watcher Handshake, LOW aktiv
D0	/NHS	NEURON Chip Handshake, LOW aktiv

4.3.1.2 Signalaufbau Status-Byte

Tabelle 4-7Signalaufbau Status-Byte

4.3.2 Reset-Verhalten

Der NEURON Chip startet automatisch beim Einschalten des PCs.

Während des Betriebs kann ein Hardware-Reset des NEURON Chips mittels des Steuer-Bits (NRES) initiiert werden.

Der NEURON Chip kann einen Reset während des Betriebs durchführen. Ein zusätzliches Reset Flipflop ist auf der Easylon Interfacekarte implementiert, um dem PC einen NEURON-Reset mitzuteilen. Der Status des Flipflops (/NRF) kann mit dem Status-Byte der Easylon Interfacekarte überprüft werden (Statusbit: /NRF). Dieses Flipflop wird über das Steuer-Bit (/NCF) zurückgesetzt und deaktiviert. Wenn /NCF auf ,low' gehalten wird, ist das Flipflop deaktiviert (/NCF = '0').

4.4 Windows CE – Applikationsschnittstelle

4.4.1 CreateFile

Öffnet ein LON Device.

```
Syntax:
ni_handle = CreateFile(szDevName,
GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0,
NULL);
```

Parameter	Тур	Bedeutung
SzDevName	TCHAR*	Gerätename, z.B. TEXT("LON1:")
Rückgabewer	t Typ	Bedeutung
ni_handle	HANDLE	Datei-Handle des LON-Device oder
		INVALID_HANDLE_VALUE

4.4.2 CloseHandle

Schließt ein LON-Device.

Syntax: CloseHandle(ni_handle);

Parameter	Тур	Bedeutung
ni_handle	HANDLE	Datei-Handle des zu schließenden LON-
		Device

4.4.3 ReadFile

Liest ein Telegramm im Application-Layer-Format. Die Funktion arbeitet synchron, d.h. sie kehrt erst dann zurück, wenn ein Telegramm vom NEURON empfangen wurde.

```
Syntax:
ReadFile(ni_handle, pMsg, len, &rLen, NULL);
```

Parameter	Тур	Bedeutung
ni_handle	HANDLE	Datei-Handle des LON-Device
pMsg	void*	Zeiger zum "expicit message buffer"
len	DWORD	Länge des Puffers [Bytes]
rlen	DWORD	Länge des empfangen Telegramms [Bytes]

4.4.4 WriteFile

Schreibt ein Telegramm im Application Layer Format. Diese Funktion kehrt sofort zurück, d.h. die Abarbeitung geschieht im Hintergrund.

Syntax: WriteFile(ni_handle, pMsg, len, &rLen, NULL);

Parameter	Тур	Bedeutung
ni_handle	HANDLE	Datei- Handle des LON-Device
pMsg	void*	Zeiger zum "expicit message buffer"
len	DWORD	Länge des Puffers [Bytes]
rlen	DWORD	Länge des zu sendenden Telegramms [Bytes]

Anmerkung: Beim Application-Layer-Format ist im Telegramm selbst eine Längen-Information enthalten. Daher wird bei den Funktionen ReadFile() und WriteFile() der Parameter len ignoriert. Insbesondere beim Lesen von Telegrammen sollte ein Buffer von max. Länge (256 Bytes) verwendet werden.

4.4.5 GetVersion

Gibt die Versionsnummer des Treibers als Unicode-String zurück, z.B. TEXT ("LPCDRV v1.00").

Syntax:

```
#define IOCTL_GETVERSION 0x43504C00
result = DeviceIoControl(ni_handle, IOCTL_GETVERSION,
szInfo, sizeof(szInfo), NULL, 0, &BytesReturned, NULL);
```

Parameter	Тур	Bedeutung
ni_handle	HANDLE	Datei-Handle des LON-Device
szInfo	TCHAR*	Puffer für Versionsstring
BytesReturn	edDWORD	Größe des String [Bytes] = (Anzahl Zeichen + 1) * 2
Rückgabewe	ert Typ	Bedeutung
Result		BOOL FALSE, wenn der Puffer zu kl

ist,

OL FALSE, wenn der Puffer zu klein

sonst TRUE

4.4.6 Watcher

Führt in Abhängigkeit des Buffer-Inhaltes eine Reihe von Watcher-Kommandos incl. LWA-Firmware-Download aus.

Syntax: #define IOCTL WATCHER 0x43504C01

Programmierhinweise

result = DeviceIoControl(ni_handle, IOCTL_WATCHER, inbuffer, sizeof(inbuffer), outbuffer, sizeof(outbuffer), &BytesReturned, NULL);

Parameter	Тур	Bedeutung
ni_handle	HANDLE	Datei-Handle des LON-Device
outbuffer	void*	Zeiger auf Buffer mit Kommando und Daten zum Watcher
inbuffer	void*	Zeiger auf Buffer mit Daten vom Watcher
BytesReturn	edDWORD	Anzahl von Watcher empfangenen Bytes, >= 2 wenn ok
Rückgabewe	ert Typ	Bedeutung
Result	BOOL	FALSE, wenn kein Watcher-Adapter vorhan-
		den,
		sonst TRUE

4.4.7 ReadFile mit Timeout

Liest ein Telegramm im Application-Layer-Format. Über den Parameter Timeout kann man bestimmen, wie sich die Funktion verhält, wenn kein Telegramm im Empfangs-Buffer liegt:

Timeout $= 0$:	Funktion kehrt sofort zurück
Timeout $=$ n:	Funktion wartet n Millisekunden auf das Ein-
	treffen des Telegrimmes.
Timeout = INFINITE:	Die Funktion arbeitet wie ein synchrone
	ReadFile-Funktion.

```
Syntax:
#define IOCTL_READ 0x43504C02
result = DeviceIoControl(ni_handle, IOCTL_READ, pMsg, len,
&timeout, 4, &rLen, NULL);
```

Parameter	Тур	Bedeutung
ni_handle	HANDLE	Datei-Handle des LON-Device
timeout	DWORD	Timeout [Millisekunden]
pMsg	void*	Zeiger auf einen "expicit message buffer"
len	DWORD	Größe des Puffers [Bytes]
Rückgabewe	ert Typ	Bedeutung
Result	BOOL	TRUE, wenn Telegramm empfangen,
		FALSE bei Timeout

Anmerkung: Nicht definierte IOCTL-Codes liefern den Wert FALSE zurück.

5 Liste der Abbildungen

Bild 1-1	Easylon ISA-Bus Interface	6
Bild 1-2	Easylon PC/104 Interface, Version LP43	6
Bild 1-3	Easylon PC/104 Interface, Version LP42	6
Bild 1-4	Easylon PC/104 Interface, Version LP4	7
Bild 2-1	DIL-Schalter	11
Bild 2-2	Ferritkern nahe am Stecker montieren	12
Bild 3-1	Blockdiagramm Easylon ISA-Bus Interfacekarte	25
Bild 3-2	Blockdiagramm Easylon PC/104 Interfacekarte	26
Bild 3-3	Anschluss externer LEDs bei LP42	31
Bild 3-4	Anschluss externer LEDs bei LP43	31

6 Liste der Tabellen

Tabelle 1-1	Varianten, Bestellnummern und Typenbezeichnung Easylon ISA-Bus Interface	8
Tabelle 1-2	Varianten, Bestellnummern und Typenbezeichnung Easylon PC/104 Interface	9
Tabelle 2-1	Einstellen der Kartenadresse	12
Tabelle 3-1	Steckerbelegung für die TP/XF und FTT Varianten der Easylon ISA-Bus Interfacekarte	27
Tabelle 3-2	Steckerbelegung für die RS485 Variante der Easylon ISA-Bus Interfacekarte	27
Tabelle 3-3	Steckerbelegung für "LP4" Easylon PC/104 Interface	28
Tabelle 3-4	Steckerbelegung für "LP42" Easylon PC/104 Interface	28
Tabelle 3-5	Steckerbelegung für "LP43" Easylon PC/104 Interface	29
Tabelle 3-6	Belegung 8poliger Stecker für externe Signale bei LP43.FBB	29
Tabelle 3-7	Service LED Bedeutung	30
Tabelle 4-1	Zuordnung der .xif Dateien	35

Liste der Abbildungen und Tabellen

Tabelle 4-2	NEURON Chip Adressbelegung für MIP/P50	36
Tabelle 4-3	NEURON Chip Adressbelegung für NSI	36
Tabelle 4-4	I/O-Adresstabelle, ISA-Bus	39
Tabelle 4-5	Signalaufbau Steuer-Byte	40
Tabelle 4-6	Bit D7D4 des Steuer-Bytes	40
Tabelle 4-7	Signalaufbau Status-Byte	41

7 Index

.xif Dateien 11, 35 16 Bit Applikationen 19 Abmessungen 33 Adapter Name 16 Adresstabelle ISA-Bus 39 Baugruppenstatus 37 Bestellnummern 8 Blockdiagramm 25 CE 34 CE-Kennzeichnung 12 configured 11 **CPU 32** Debug Flag 16 Deinstallation 17, 18 Device Nummer 21 DIL Schalter 6, 7, 11 **DOS 20** EasyCheck 19 Eingangspuffer 22 Elektromagnetische Verträglichkeit 12, 33, 34 Feuchtigkeit 32 Firmware 10, 17 Hibernate 17 I/O Adressen 11, 32 I/O Port 35 Installation 11 Interrupt 36 IRQ 14, 18, 21, 30, 40 ISA-Bus Interface 24, 35, 39 Leistungsaufnahme 32 Lieferumfang 10 Lon Adapter 16 MIP 10, 24 Netzwerk Interface 24, 35

